112 research outputs found

    Aortic size, distensibility, and pulse wave velocity changes with aging: longitudinal analysis from Multi-Ethnic Study of Atherosclerosis (MESA)

    Get PDF
    International audienceArterial stiffening is related to an intricate interplay between aging and other cardiovascular risk factors. The aortic arch accounts for most of the vascular buffering function and is primarily involved in arterial stiffening. MRI has been used to noninvasively measure strain, distensibility, and pulse wave velocity of the ascending aorta. We report aortic size and stiffness changes over mid to late adulthood in longitudinal comparisons with MRI over a 10-year period in the MESA cohort

    Deep Learning-based Automated Aortic Area and Distensibility Assessment: The Multi-Ethnic Study of Atherosclerosis (MESA)

    Full text link
    This study applies convolutional neural network (CNN)-based automatic segmentation and distensibility measurement of the ascending and descending aorta from 2D phase-contrast cine magnetic resonance imaging (PC-cine MRI) within the large MESA cohort with subsequent assessment on an external cohort of thoracic aortic aneurysm (TAA) patients. 2D PC-cine MRI images of the ascending and descending aorta at the pulmonary artery bifurcation from the MESA study were included. Train, validation, and internal test sets consisted of 1123 studies (24282 images), 374 studies (8067 images), and 375 studies (8069 images), respectively. An external test set of TAAs consisted of 37 studies (3224 images). A U-Net based CNN was constructed, and performance was evaluated utilizing dice coefficient (for segmentation) and concordance correlation coefficients (CCC) of aortic geometric parameters by comparing to manual segmentation and parameter estimation. Dice coefficients for aorta segmentation were 97.6% (CI: 97.5%-97.6%) and 93.6% (84.6%-96.7%) on the internal and external test of TAAs, respectively. CCC for comparison of manual and CNN maximum and minimum ascending aortic areas were 0.97 and 0.95, respectively, on the internal test set and 0.997 and 0.995, respectively, for the external test. CCCs for maximum and minimum descending aortic areas were 0.96 and 0. 98, respectively, on the internal test set and 0.93 and 0.93, respectively, on the external test set. We successfully developed and validated a U-Net based ascending and descending aortic segmentation and distensibility quantification model in a large multi-ethnic database and in an external cohort of TAA patients.Comment: 25 pages, 5 figure

    State-of-the-art CT and MR imaging and assessment of atherosclerotic carotid artery disease: standardization of scanning protocols and measurements - a consensus document by the European Society of Cardiovascular Radiology (ESCR)

    Get PDF
    The European Society of Cardiovascular Radiology (ESCR) is the European specialist society of cardiac and vascular imaging. This society's highest priority is the continuous improvement, development, and standardization of education, training, and best medical practice, based on experience and evidence. The present intra-society consensus is based on the existing scientific evidence and on the individual experience of the members of the ESCR writing group on carotid diseases, the members of the ESCR guidelines committee, and the members of the executive committee of the ESCR. The recommendations published herein reflect the evidence-based society opinion of ESCR. We have produced a twin-papers consensus, indicated through the documents as respectively "Part I" and "Part II." The first document (Part I) begins with a discussion of features, role, indications, and evidence for CT and MR imaging-based diagnosis of carotid artery disease for risk stratification and prediction of stroke (Section I). It then provides an extensive overview and insight into imaging-derived biomarkers and their potential use in risk stratification (Section II). Finally, detailed recommendations about optimized imaging technique and imaging strategies are summarized (Section III). The second part of this consensus paper (Part II) is focused on structured reporting of carotid imaging studies with CT/MR

    State-of-the-art CT and MR imaging and assessment of atherosclerotic carotid artery disease: standardization of scanning protocols and measurements-a consensus document by the European Society of Cardiovascular Radiology (ESCR).

    Get PDF
    The European Society of Cardiovascular Radiology (ESCR) is the European specialist society of cardiac and vascular imaging. This society's highest priority is the continuous improvement, development, and standardization of education, training, and best medical practice, based on experience and evidence. The present intra-society consensus is based on the existing scientific evidence and on the individual experience of the members of the ESCR writing group on carotid diseases, the members of the ESCR guidelines committee, and the members of the executive committee of the ESCR. The recommendations published herein reflect the evidence-based society opinion of ESCR. We have produced a twin-papers consensus, indicated through the documents as respectively "Part I" and "Part II." The first document (Part I) begins with a discussion of features, role, indications, and evidence for CT and MR imaging-based diagnosis of carotid artery disease for risk stratification and prediction of stroke (Section I). It then provides an extensive overview and insight into imaging-derived biomarkers and their potential use in risk stratification (Section II). Finally, detailed recommendations about optimized imaging technique and imaging strategies are summarized (Section III). The second part of this consensus paper (Part II) is focused on structured reporting of carotid imaging studies with CT/MR. KEY POINTS: • CT and MR imaging-based evaluation of carotid artery disease provides essential information for risk stratification and prediction of stroke. • Imaging-derived biomarkers and their potential use in risk stratification are evolving; their correct interpretation and use in clinical practice must be well-understood. • A correct imaging strategy and scan protocol will produce the best possible results for disease evaluation

    State-of-the-art CT and MR imaging and assessment of atherosclerotic carotid artery disease: the reporting-a consensus document by the European Society of Cardiovascular Radiology (ESCR).

    Get PDF
    The European Society of Cardiovascular Radiology (ESCR) is the European specialist society of cardiac and vascular imaging. This society's highest priority is the continuous improvement, development, and standardization of education, training, and best medical practice, based on experience and evidence. The present intra-society consensus is based on the existing scientific evidence and on the individual experience of the members of the ESCR writing group on carotid diseases, the members of the ESCR guidelines committee, and the members of the executive committee of the ESCR. The recommendations published herein reflect the evidence-based society opinion of ESCR. The purpose of this second document is to discuss suggestions for standardized reporting based on the accompanying consensus document part I. KEY POINTS: • CT and MR imaging-based evaluation of carotid artery disease provides essential information for risk stratification and prediction of stroke. • The information in the report must cover vessel morphology, description of stenosis, and plaque imaging features. • A structured approach to reporting ensures that all essential information is delivered in a standardized and consistent way to the referring clinician

    Left atrial mechanics and aortic stiffness following high intensity interval training: a randomised controlled study

    Get PDF
    Purpose: High intensity interval training (HIIT) has been shown to improve important health parameters, including aerobic capacity, blood pressure, cardiac autonomic modulation and left ventricular (LV) mechanics. However, adaptations in left atrial (LA) mechanics and aortic stiffness remain unclear. Methods: Forty-one physically inactive males and females were recruited. Participants were randomised to either a 4-week HIIT intervention (n=21) or 4-week control period (n=20). The HIIT protocol consisted of 3x30-second maximal cycle ergometer sprints with a resistance of 7.5% body weight, interspersed with 2-minutes of active unloaded recovery, 3 times per week. Speckle tracking imaging of the LA and M-Mode tracing of the aorta was performed pre and post HIIT and control period. Results: Following HIIT, there was significant improvement in LA mechanics, including LA reservoir (13.9±13.4%, p=0.033), LA conduit (8.9±11.2%, p=0.023) and LA contractile (5±4.5%, p=0.044) mechanics compared to the control condition. In addition, aortic distensibility (2.1±2.7cm2dyn-1103, p=0.031) and aortic stiffness index (-2.6±4.6, p=0.041) were improved compared to the control condition. In stepwise linear regression analysis, aortic distensibility change was significantly associated with LA stiffness change R2 of 0.613 (p=0.002). Conclusion: A short-term programme of HIIT was associated with a significant improvement in LA mechanics and aortic stiffness. These adaptations may have important health implications and contribute to the improved LV diastolic and systolic mechanics, aerobic capacity and blood pressure previously documented following HIIT
    corecore